@Nomad, I'd suggest that you find and watch a few youtube videos on how to use and test voltage and continuity with a multimeter tester. There's a lot of good videos out there available to watch. Although every multimeter is different and have different ways to set the tests you do, how you make the tests are basically the same. Once the meter is set to the test you're wanting to make, you place one probe on one leg of what you're testing and the other on the second leg to get your reading.
Also, carefully read the instructions that comes with your meter. They usually have good instructions on how to make the different tests and how to set your meter. If you don't have the user manual search the internet for the one that goes with your meter. You can most often find it that way.
Some meters are auto adjusting and will sense your voltage but most have a dile that you need to set for the different tests. For example you will have different settings for testing AC voltage, DC voltage and continuity or resistance. You need to have the meter set right to get the right readings.
OK, the Truper wont give you the precise measurements you will be looking for when looking for a pinpoint number. I'd use the Chacon. You can test and then watch the voltage as you adjust on the DC side.
Is this a question? If so;
AC is alternating current and is usually provided by a big generator located in power plants or smaller generators located on site where needed. So yes, your home's wall socket will provide AC power if you're home is hooked up to the power companies power grid. To power up the power converter you have you will be hooking up a three wire power cord (with a male end as DJ shows above) to the three connection points on the left side your converter.
DC is direct current and is stored in batteries or produced by converters like yours. You will be attaching your DC fed devices like lights and motors to the right side of your converter. It looks like you have 3 separate pairs of connections called circuits on the DC side of your converter to attach to. Each DC circuit has two connection points, one marked Com (Ground / Neutral) and one marked +V (positive / hot). The Comm connections are all tied together, thus called Common. You can split up your DC devices on each of these DC circuits. For example, you could place your sound system on one circuit, your servos on the second and lights on the third.
This next one is optional and more complex but a very good idea. Each of the DC circuits could have a fuse added to either the positive or neutral leg. I like fusing the positive (Hot) leg. Simply place a fuse holder at the beginning of the circuit of one of the two wires that feeds it's devices. What size fuse to place in the holder? Add up all the amps that all the devices will pull at peek load that the one circuit is feeding and add 20%. For example if one of your DC circuits being fed from your converter is drawing 8 amps at peek load, then you would use a 10 amp fuse. I'd use a slow blow fuse. I seldom use fast blow fuses for mechanical stuff like this. Why add a fuse? if you accidentally cause a short by crossing a wire or one of your devices burns out, your fuse should blow before causing other devices from being damaged.
No don’t connect those yellow lines.
@dj
got it . i adjust my picture .
@Nomad, I'd suggest that you find and watch a few youtube videos on how to use and test voltage and continuity with a multimeter tester. There's a lot of good videos out there available to watch. Although every multimeter is different and have different ways to set the tests you do, how you make the tests are basically the same. Once the meter is set to the test you're wanting to make, you place one probe on one leg of what you're testing and the other on the second leg to get your reading.
Also, carefully read the instructions that comes with your meter. They usually have good instructions on how to make the different tests and how to set your meter. If you don't have the user manual search the internet for the one that goes with your meter. You can most often find it that way.
Some meters are auto adjusting and will sense your voltage but most have a dile that you need to set for the different tests. For example you will have different settings for testing AC voltage, DC voltage and continuity or resistance. You need to have the meter set right to get the right readings.
hi dave
this is my voltmeter . i can messure batterie voltage , or using OHM .test the device itself . smaller picture. i also have a 220 volt tester separt .
changed the picture .
OK, the Truper wont give you the precise measurements you will be looking for when looking for a pinpoint number. I'd use the Chacon. You can test and then watch the voltage as you adjust on the DC side.
i use the truper only for wallsockets .
DC=batterie power ? AC=wallsocket power ?
DC is direct current and is stored in batteries or produced by converters like yours. You will be attaching your DC fed devices like lights and motors to the right side of your converter. It looks like you have 3 separate pairs of connections called circuits on the DC side of your converter to attach to. Each DC circuit has two connection points, one marked Com (Ground / Neutral) and one marked +V (positive / hot). The Comm connections are all tied together, thus called Common. You can split up your DC devices on each of these DC circuits. For example, you could place your sound system on one circuit, your servos on the second and lights on the third.
This next one is optional and more complex but a very good idea. Each of the DC circuits could have a fuse added to either the positive or neutral leg. I like fusing the positive (Hot) leg. Simply place a fuse holder at the beginning of the circuit of one of the two wires that feeds it's devices. What size fuse to place in the holder? Add up all the amps that all the devices will pull at peek load that the one circuit is feeding and add 20%. For example if one of your DC circuits being fed from your converter is drawing 8 amps at peek load, then you would use a 10 amp fuse. I'd use a slow blow fuse. I seldom use fast blow fuses for mechanical stuff like this. Why add a fuse? if you accidentally cause a short by crossing a wire or one of your devices burns out, your fuse should blow before causing other devices from being damaged.
@dave
ah sorry it was a question . first part of your explanation . connecting the wallsocket cable .
how does it go from here , the suply to multiple servo's if i have only one output 5V on the powersupply .