
Copyright 2025 Synthiam Inc.

Overview

When an I/O controller (Arduino, Microbit, etc.) is programmed with Synthiam firmware compatible with
ARC, we refer to it as an EZB. The firmware then allows the EZB I/O controller to use additional
capabilities available in ARC. An EZB connects sensors, motors, and peripherals to the computer running
ARC.

DIY & Education

Create Custom Firmware

Anyone can use the EZB communication protocol to support a microcontroller or PLC. You can modify
existing firmware with new capabilities, or create your own.

EZB Communication Protocol

Enterprise

Become a Hardware Partner

Unleash the full potential of your robot product. Make it compatible with ARC to increase and retain
customers. ARC is the industry's proven platform for users to experience the most out of your robot
products!

EZB Communication Protocol

Current Supported Hardware
[opt:hardware]

Communication Protocol
Intellectual Property Rights Notice for Specifications Documentation

Connection

Capability Controller

Protocol Commands

Overview

Release All Servos

Get Unique ID

Set Battery Monitor Protection State

Set Battery Monitor Low Voltage Threshold

Get Battery Voltage

Get CPU Temperature

file:///Support/EZB-Firmware/communication-protocol
file:///Partner/add-a-robot-product-to-arc

UART #0 Init

UART #1 Init

UART #2 Init

UART #0 Write

UART #1 Write

UART #2 Write

UART #0 Get Available Bytes

UART #1 Get Available Bytes

UART #2 Get Available Bytes

UART #0 Get Data from Input Buffer

UART #1 Get Data from Input Buffer

UART #2 Get Data from Input Buffer

I2C Set Clock Speed

Restore to Defaults

I2C Write

I2C Read

Set PWM Duty Cycle

Set Servo Speed

Set Servo Position

Set Digital Port ON

Set Digital Port OFF

Get Digital Port State

Get ADC Value

Send UART on any Digital Port

Streaming Audio

Commands

Sync Example Code

EZBv4Sound Example Code

Camera

Received Packet

Sample Code

To-Do

Intellectual Property Rights Notice for Specifications
Documentation

Â· Technical Documentation. Synthiam Inc. published this specifications document for EZ-B protocols
communication and standards support. Additionally, example source-code documents additional inter-
protocol relationships and interactions.

Â· Copyrights. This documentation is covered by Synthiam Inc. copyrights. Regardless of any other terms
that are contained in the terms of use for the Synthiam Inc. website that hosts this documentation, you
can make copies of it in order to develop implementations of the technologies that are described in this
documentation and can distribute portions of it in your implementations that use Synthiam Inc.
technologies or in your documentation as necessary to properly document the implementation. You can
also distribute in your implementation, with or without modification, any schemas, IDLs, or code samples
that are included in the documentation.

Â· Trade Secrets. The communication protocol published in this document is exclusive to the EZ-B family
robot controllers and may not be implemented on third party products without written consent from
Synthiam Inc.

Â· Patents. Synthiam Inc. may have patents that might cover your implementations of the technologies
described in this documentation. Neither this notice nor Synthiam Inc.â€™s delivery of this
documentation grants any licenses under those patents or any other Synthiam Inc. patents. If you would
prefer a written license, licenses are available by contacting partners@synthiam.com.

Â· Trademarks. The names of companies and products contained in this documentation might be covered
by trademarks or similar intellectual property rights. This notice does not grant any licenses under those
rights.

Â· Fictitious Names. The example companies, organizations, products, domain names, email addresses,
logos, people, places, and events that are depicted in this documentation may be fictitious. No
association with any real company, organization, product, domain name, email address, logo, person,
place, or event is intended or should be inferred.

Â· Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Connection
How to connect to EZ-B. Once the TCP connection has been established, the following character (0x55)
must be transmitted immediately. One byte will be returned which contains the hardware revision of the
EZ-B.

 Notes
Internet
Protocol:

TCP

Default W i-Fi
Mode:

AP Mode

(access
point)

Default IP
Address:

192.168.1.1 Configurable on EZ-B v4.1/2 and IoTiny

Default Port: 23 Configurable on EZ-B v4.1/2 and IoTiny

mailto:partners@synthiam.com

Transmit Receive Notes
0x55 EZ-B Hardware Revision (1

byte)
EZB_v4_OS_With_Comm_1 = 4,

EZB_v4_OS_With_Comm_2 = 42,

EZB_v4_OS_IoTiny = 100,

Client_Already_Connected = 78,

EZB_v3_OS = 166,

EZB_v3_BootLoader = 2,

CapabilityController = 222

Capability Controller
When the EZB responds with the version type, the communication module in ARC will determine what to
do next. This is because the version returned will specify the capabilities of the controller to ARC. This
allows ARC to know what capabilities the control has, such as HW UART, W iFi ability, Servo ability, etc..

There is an exception with CapaiblityController (222) response. If the EZB responds with
CapabilityController, the EZB must be prepared to respond with a Firmware ID. The EZB will send decimal
253 (0xFD) and expect 4 byte UIint32 response.

Transmit Receive Notes
0xFD Firmware ID (4 bytes)

(UInt32)
Firmware IDs and respective
cpaabilities are registered with
Synthiam. Contact
partners@synthiam.com to arrange
adding custom supported firmware
and capabilities.

The Firmware ID response will register capabilities for the ARC session on the respective EZB connection
index. If an ARC program or robot skill attempts to use a capability that is not supported by the Firmware
ID, an error will be displayed or logged.

Protocol Commands

Overview
Â· All transmit/receive data commands are 8 bit (1 Byte) unless otherwise specified.

Â· For additional information regarding supported EZ-B controllers (Arduino, Raspberry Pi, etc) and
their firmware, visit https://synthiam.com/GettingStarted/Build-Robots

Release All Servos
Stops PWM and Servo PWM on all digital ports.

Transmit Receive Notes
0x01 n/a

Get Unique ID

mailto:partners@synthiam.com
https://synthiam.com/GettingStarted/Build-Robots

Every EZ-B has a unique 12 byte ID that can be queried.

Transmit Receive Notes
0x02 12 Bytes Each byte is an ASCII

character of the GUID. GUID
is 12 bytes long.

Set Battery Monitor Protection State
Enable or disable the internal EZ-B battery monitor.

Transmit Receive Notes
0x04, 0x00, [0x00 | 0x01] n/a

Set Battery Monitor Low Voltage Threshold
Specify the low voltage threshold for the battery monitor. The value to be specified is a little endian 16
bit unsigned INT , which is the VOLTAGE / 0.003862434.

Transmit Receive Notes
0x04, 0x01, <unsigned 16 bit
value>

n/a 16 bit value is little endian.

Get Battery Voltage
Returns the battery voltage of the EZ-B. The returned value is a little endian unsigned 16 bit INT . To get
voltage, multiple the value by 0.003862434m. This means the voltage = RETURN VALUE *
0.003862434.

Transmit Receive Notes
0x04, 0x02 2 bytes <unsigned 16 bit

value>
16 bit value is little endian.

Get CPU Temperature
Returns the temperature of the EZ-B CPU. The returned value is a little endian unsigned 16 bit INT . To
get temperature in Celsius, multiple the value by 0.026341480261472. This means the temperature =
RETURN VALUE * 0.026341480261472.

Transmit Receive Notes
0x04, 0x03 2 bytes <unsigned 16 bit

value>
16 bit value is little endian.

UART #0 Init
Initialize the UART #0 port on the EZ-B with the specified baud rate as a little endian unsigned 32 bit
INT . This also clears the UART input buffer on the EZ-B.

Transmit Receive Notes
0x04, 0x05, <unsigned 32 bit
value>

n/a 32 bit baud rate value is
little endian.

UART #1 Init
Initialize the UART #1 port on the EZ-B with the specified baud rate as a little endian unsigned 32 bit
INT . This also clears the UART input buffer on the EZ-B.

Transmit Receive Notes
0x04, 0x09, <unsigned 32 bit
value>

n/a 32 bit baud rate value is
little endian.

UART #2 Init
Initialize the UART #2 port on the EZ-B with the specified baud rate as a little endian unsigned 32 bit
INT . This also clears the UART input buffer on the EZ-B.

Transmit Receive Notes
0x04, 0x0D, <unsigned 32 bit
value>

n/a 32 bit baud rate value is
little endian.

UART #0 Write
Write data out of the UART #0 port on the EZ-B. The length of the data is specified as a little endian
unsigned 16 bit INT .

Transmit Receive Notes
0x04, 0x06, <unsigned 16 bit value data
length>, DATA BYTESâ€¦

n/a 16 bit value is little endian.

UART #1 Write
Write data out of the UART #1 port on the EZ-B. The length of the data is specified as a little endian
unsigned 16 bit INT .

Transmit Receive Notes
0x04, 0x0A, <unsigned 16 bit value data
length>, DATA BYTESâ€¦

n/a 16 bit value is little endian.

UART #2 Write
Write data out of the UART #2 port on the EZ-B. The length of the data is specified as a little endian
unsigned 16 bit INT .

Transmit Receive Notes
0x04, 0x0E, <unsigned 16 bit value data
length>, DATA BYTESâ€¦

n/a 16 bit value is little endian.

UART #0 Get Available Bytes
Get the available number of bytes in the UART #0 input buffer. The returned length is a little endian
unsigned 16 bit INT .

Transmit Receive Notes
0x04, 0x07 2 Bytes <unsigned 16 bit> 16 bit returned value is little

endian.

UART #1 Get Available Bytes
Get the available number of bytes in the UART #1 input buffer. The returned length is a little endian
unsigned 16 bit INT .

Transmit Receive Notes
0x04, 0x0B 2 Bytes <unsigned 16 bit> 16 bit returned value is little

endian.

UART #2 Get Available Bytes
Get the available number of bytes in the UART #2 input buffer. The returned length is a little endian
unsigned 16 bit INT .

Transmit Receive Notes
0x04, 0x0F 2 Bytes <unsigned 16 bit> 16 bit returned value is little

endian.

UART #0 Get Data from Input Buffer
Get the specified number of bytes from the UART #0 input buffer. The specified length is a little endian
unsigned 16 bit INT .

Transmit Receive Notes
0x04, 0x08, <unsigned 16 bit
length to receive>

<Multiple bytes as specified
by the transmit call>

16 bit value is little endian.

UART #1 Get Data from Input Buffer
Get the specified number of bytes from the UART #1 input buffer. The specified length is a little endian
unsigned 16 bit INT .

Transmit Receive Notes
0x04, 0x0C, <unsigned 16 bit
length to receive>

<Multiple bytes as specified
by the transmit call>

16 bit value is little endian.

UART #2 Get Data from Input Buffer
Get the specified number of bytes from the UART #2 input buffer. The specified length is a little endian
unsigned 16 bit INT .

Transmit Receive Notes
0x04, 0x10, <unsigned 16 bit
length to receive>

<Multiple bytes as specified
by the transmit call>

16 bit value is little endian.

I2C Set Clock Speed
Specify the clock speed of the i2c interface. The specified length is a little endian unsigned 32 bit INT .

Transmit Receive Notes
0x04, 0x11, <unsigned 32
bit speed>

n/a 32 bit value is little endian.

Restore to Defaults
Restore the EZ-B to default factory settings.

Transmit Receive Notes
0x04, 0x13 n/a 32 bit value is little endian.

I2C Write
Write data out of the I2C port on the EZ-B. The length of the data is specified as an unsigned 8 bit INT .

Transmit Receive Notes
0x0A, <unsigned 8 bit byte i2c address>, <unsigned 8 bit bytes
to send>, DATA BYTESâ€¦

n/a

I2C Read
Get the specified number of bytes from the I2C input buffer. The specified length is an unsigned 8 bit
INT .

Transmit Receive Notes
0x0B, <unsigned 8 bit byte i2c Address>, <unsigned
8 bit byes to read>

<Multiple bytes as specified
by request>

Set PWM Duty Cycle
Specify the PWM Duty Value to be outputted on the specified digital port. The Port Index is the digital
port to be outputted starting with D0. The PWM value is between 0 and 100.

Example of 0% duty on D3: 0x12, 0x00

Example of 75% duty on D8: 0x17, 0x4B

Transmit Receive Notes
0x0F + <Port Index>,
<unsigned 8 bit duty>

n/a

Set Servo Speed
Specify the Servo Speed for the specified digital port. The Port Index is the digital port to be outputted
starting with D0.

*Note: A servo position must be specified before the servo speed can be set.

Example of setting servo speed to 3 on D3: 0x2A, 0x03

Transmit Receive Notes
0x27 + <Port Index>,
<unsigned 8 bit speed>

n/a

Set Servo Position
Specify the Servo Position for the specified digital port. The Port Index is the digital port to be outputted

starting with D0. The position is in degrees between 1 and 180 (specify 0 to release the servo PWM).

Example of setting servo on Port D3 to position 90: 0xAF, 0x5A

Example of setting servo on Port D18 to position 145: 0xBE, 0x91

Transmit Receive Notes
0xAC + <Port Index>, <unsigned
8 bit position>

n/a

Set Digital Port ON
Specify the Digital Port to be in the ON (true) state on the specified digital port. The Port Index is the
digital port to be outputted starting with D0.

Example of TRUE on D3: 0x67

Example of TRUE on D8: 0x6C

Transmit Receive Notes
0x64 + <Port Index> n/a

Set Digital Port OFF
Specify the Digital Port to be in the OFF (false) state on the specified digital port. The Port Index is the
digital port to be outputted starting with D0.

Example of TRUE on D3: 0x7F

Example of TRUE on D8: 0x84

Transmit Receive Notes
0x7C + <Port Index> n/a

Get Digital Port State
Get the state of the specified digital port. The Port Index is the digital port to starting with D0. Once the
port is read, this puts the port into INPUT mode.

Example of getting value of port D3: 0x97

Example of TRUE on D8: 0x9C

Transmit Receive Notes
0x94 + <Port Index> [0x00 | 0x01] Returns a 0 (false) or 1

(true) of the state of the
digital port.

Get ADC Value
Get the ADC Value of the specified analog port. The Port Index is the ADC (analog) port to be read
starting with ADC0.

Example of reading ADC value on port ADC3: 0xC7

Transmit Receive Notes
0xC4 + <Port Index> <unsigned 16 bit INT>

Send UART on any Digital Port
Send the specified data to any digital port at one of the supported baud rates.

 Baud_4800 = 0,

 Baud_9600 = 1,

 Baud_19200 = 2,

 Baud_38400 = 3,

 Baud_57600 = 4,

 Baud_115200 = 5

Example of writing â€˜HELLOâ€™ to port D3 at 9600: 0xCF, 0x01, 0x05, 0x48, 0x45, 0x4C, 0x4C, 0x4F

Transmit Receive
0xCC + <Port Index>, <unsigned 8 bit value baud rate>,
<unsigned 8 bit value data size>, DATAâ€¦

n/a

Streaming Audio
The EZ-B uses a raw 8 bit mono PCM stream at 14.7khz (14,700hz) for the DAC to play audio. The EZ-B
has an internal 50k buffer for audio. The audio data is sent to the EZ-B and the DAC can be enabled to
begin playing the data within the buffer. Once the DAC is enabled, you must continue streaming data at
the EZ-B at the rate of 14.7khz. This can be done using a calculation to determine how long to pause for.

Commands
Load data into the EZ-B buffer

// build the packet including the LOAD command (0x01) and audio data bytes

List<byte> dataTmp = new List<byte>();

dataTmp.Add(0x01);

dataTmp.AddRange(BitConverter.GetBytes((UInt16)audioData));

dataTmp.AddRange(bTmp.Take(audioData));

// send the constructed packet to the ez-b

ezb.sendCommand(0xfe, dataTmp.ToArray());

Begin playing the EZ-Bâ€™s audio buffer

// instruct the ezb to begin playing the DAC audio buffer

ezb.sendCommand(0xfe, 0x02);

Stop the EZ-Bâ€™s DAC audio play

ezb.sendCommand(0xfe, 0x00);

Sync Example Code
To sync your client with the playback frequency of the EZ-B (14.7khz), this is an example code.

// Use the stop watch to determine how long we have been playing for

// the stop watch begins at the start of the playback (after initial load of data)

float runtime = (float)sw.ElapsedMilliseconds;

// convert milliseconds to seconds. Multiple the seconds by the audio bit rate.

// this gets us where we should be in the stream.

// We add the prebuffer length because we don't actually wait and play during the prebuffer, as the pre
buffer is transmitted in one chunk with no delays.

// Also, the stop watch doesn't start until the audio begins to play after prebuffer.

float shouldBeAtSamplePosition = ((runtime / 1000f) * (float)AUDIO_SAMPLE_BITRATE) +
(float)_afterBuffer.Length;

// check to see if we are behind on the stream based on how long the audio has been playing in samples.

float difference = _position - shouldBeAtSamplePosition;

// if there is a difference, wait some time and let the ez-b buffer play and catch up

if (difference > 0) {

 // convert the sample difference to a millisecond time so we know how long to sleep and let the ez-b
catch up

 float delay = (difference / AUDIO_SAMPLE_BITRATE) * 1000;

 Thread.Sleep((int)delay);

}

EZBv4Sound Example Code
This is a C# example of how to play back an audio stream to the EZ-B for your reference

using System;

using System.Collections.Generic;

using System.Diagnostics;

using System.IO;

using System.Linq;

using System.Threading;

namespace EZ_B {

 public class EZBv4Sound : DisposableBase {

 class ThreadStartParams {

 public int CNT;

 public MemoryStream AudioStream;

 public ThreadStartParams(int cnt, MemoryStream audioStream) {

 CNT = cnt;

 AudioStream = audioStream;

 }

 }

 EZB _ezb;

 EZTaskScheduler _tsSound = null;

 int _playFromSample = 0;

 volatile int _cnt = 0;

 int _position = 0;

 bool _isPlaying = false;

 byte [] _rampUp = new byte[256];

 byte [] _rampDown = new byte[256];

 // Appended to end of all audio streams to compensate for the time it takes to pre-
buffer

 byte [] _afterBuffer;

 /// <summary>

 /// The recommended size of the the audio packets

 /// </summary>

 public static readonly int RECOMMENDED_PACKET_SIZE = 256;

 /// <summary>

 /// The recommended size of the prebuffer before playing the audio

 /// </summary>

 public static readonly int RECOMMENDED_PREBUFFER_SIZE = 20000;

 /// <summary>

 /// The sample rate at which the data is played back on the EZ-B

 /// </summary>

 public static readonly int AUDIO_SAMPLE_BITRATE = 14700;

 /// <summary>

 /// The size of each packet which is transmitted over the wire to the EZ-B.

 /// </summary>

 public int PACKET_SIZE = RECOMMENDED_PACKET_SIZE;

 /// <summary>

 /// The ammount of data to prebuffer to the EZ-B before playing the audio. The EZ-B
has a 50k buffer, so this value cannot be any higher than that.

 /// </summary>

 public int PREBUFFER_SIZE = RECOMMENDED_PREBUFFER_SIZE;

 /// <summary>

 /// Event exceuted when new data is being sent to the EZ-B

 /// </summary>

 public delegate void OnAudioDataHandler(int minVal, int maxVal, int avgVal);

 /// <summary>

 /// Event executed when the volume value has changed

 /// </summary>

 public delegate void OnVolumeChangedHandler(decimal volume);

 /// <summary>

 /// Event executed when the audio has stopped playing

 /// </summary>

 public delegate void OnStopPlayingHandler();

 /// <summary>

 /// Event executed when the audio has begun playing

 /// </summary>

 public delegate void OnStartPlayingHandler();

 /// <summary>

 /// Event executed when the audio level is clipping. This means the volume value is
amplifying the audio past the limits

 /// </summary>

 public delegate void OnClippingStatusHandler(bool isClipping);

 public event OnAudioDataHandler OnAudioDataChanged;

 public event OnVolumeChangedHandler OnVolumeChanged;

 public event OnStopPlayingHandler OnStopPlaying;

 public event OnStartPlayingHandler OnStartPlaying;

 public event OnClippingStatusHandler OnClippingStatus;

 private decimal _volume = 100;

 /// <summary>

 /// Returns status if music is playing

 /// </summary>

 public bool IsPlaying {

 get {

 return _isPlaying;

 }

 }

 /// <summary>

 /// Get or Set the volume

 /// </summary>

 public decimal Volume {

 get {

 return _volume;

 }

 set {

 if (_volume != value && OnVolumeChanged != null)

 OnVolumeChanged(value);

 _volume = value;

 }

 }

 protected internal EZBv4Sound(EZB ezb) {

 _ezb = ezb;

 for (int x = 0; x < _rampUp.Length; x++)

 _rampUp[x] = (byte)(x / 2);

 for (int x = 0; x < 64; x++)

 _rampDown[x] = (byte)(128 - (x * 2));

 initAfterBufferArrays();

 _tsSound = new EZTaskScheduler("v4 Sound");

 _tsSound.OnEventToRun += threadStreamAudio;

 _tsSound.OnEventStart += _tsSound_OnEventStart;

 _tsSound.OnEventCompleted += _tsSound_OnEventCompleted;

 }

 private void _tsSound_OnEventStart(int taskId, object o) {

 _isPlaying = true;

 }

 private void _tsSound_OnEventCompleted(int taskId, object o) {

 _isPlaying = false;

 }

 void initAfterBufferArrays() {

 if (_afterBuffer == null || _afterBuffer.Length != PREBUFFER_SIZE) {

 _afterBuffer = new byte[PREBUFFER_SIZE];

 for (int x = 0; x < _afterBuffer.Length; x++)

 _afterBuffer[x] = 0;

 }

 }

 /// <summary>

 /// Play the Audio Data out of the EZ-B.

 /// The audio must be RAW 8 Bit at 18 KHZ Sample Rate

 /// </summary>

 public void PlayDataWait(byte[] data) {

 PlayDataWait(null, data, _volume, new int[] { }, 0);

 }

 /// <summary>

 /// Stream raw audio data to the EZ-B v4's speakers.

 /// 0 is silent, 100 is normal, 200 is 2x gain, 300 is 3x gain, etc.

 /// The audio must be RAW 8 Bit at 18 KHZ Sample Rate

 /// </summary>

 public void PlayData(byte[] data) {

 PlayData(null, data, _volume, new int[] { }, 0);

 }

 /// <summary>

 /// Stream raw audio data to the EZ-B v4's speakers.

 /// 0 is silent, 100 is normal, 200 is 2x gain, 300 is 3x gain, etc.

 /// The audio must be RAW 8 Bit at 18 KHZ Sample Rate

 /// </summary>

 public void PlayData(byte[] data, decimal volume) {

 PlayData(null, data, volume, new int[] { }, 0);

 }

 /// <summary>

 /// Stream raw audio data to the EZ-B v4's speakers.

 /// 0 is silent, 100 is normal, 200 is 2x gain, 300 is 3x gain, etc.

 /// The audio must be RAW 8 Bit at 18 KHZ Sample Rate

 /// </summary>

 public void PlayData(byte[] data, decimal volume) {

 PlayData(null, data, volume, 0);

 }

 /// <summary>

 /// Stream raw audio data to the EZ-B v4's speakers.

 /// 0 is silent, 100 is normal, 200 is 2x gain, 300 is 3x gain, etc.

 /// The audio must be RAW 8 Bit at 18 KHZ Sample Rate

 /// </summary>

 public void PlayDataWait(byte[] data, decimal volume) {

 PlayDataWait(null, data, volume, new int[] { }, 0);

 }

 /// <summary>

 /// Stream raw audio data to the EZ-B v4's speakers.

 /// 0 is silent, 100 is normal, 200 is 2x gain, 300 is 3x gain, etc.

 /// The audio must be RAW 8 Bit at 18 KHZ Sample Rate

 /// *Note: You must dispose of the memory stream yourself after calling this

 /// </summary>

 public void PlayData(Stream ms) {

 PlayData(ms, null, _volume, new int[] { }, 0);

 }

 /// <summary>

 /// Stream raw audio data to the EZ-B v4's speakers.

 /// 0 is silent, 100 is normal, 200 is 2x gain, 300 is 3x gain, etc.

 /// The audio must be RAW 8 Bit at 18 KHZ Sample Rate

 /// *Note: You must dispose of the memory stream yourself after calling this

 /// </summary>

 public void PlayData(Stream ms) {

 PlayData(ms, null, _volume, 0);

 }

 /// <summary>

 /// Stream raw audio data to the EZ-B v4's speakers.

 /// 0 is silent, 100 is normal, 200 is 2x gain, 300 is 3x gain, etc.

 /// The audio must be RAW 8 Bit at 18 KHZ Sample Rate

 /// *Note: You must dispose of the memory stream yourself after calling this

 /// </summary>

 public void PlayData(Stream ms, int playFromSample) {

 PlayData(ms, null, _volume, playFromSample);

 }

 /// <summary>

 /// Stream raw audio data to the EZ-B v4's speakers.

 /// 0 is silent, 100 is normal, 200 is 2x gain, 300 is 3x gain, etc.

 /// The audio must be RAW 8 Bit at 18 KHZ Sample Rate

 /// *Note: You must dispose of the memory stream yourself after calling this

 /// </summary>

 public void PlayDataWait(Stream ms) {

 PlayDataWait(ms, null, _volume, new int[] { }, 0);

 }

 /// <summary>

 /// Stream raw audio data to the EZ-B v4's speakers.

 /// 0 is silent, 100 is normal, 200 is 2x gain, 300 is 3x gain, etc.

 /// The audio must be RAW 8 Bit at 18 KHZ Sample Rate

 /// *Note: You must dispose of the memory stream yourself after calling this

 /// </summary>

 public void PlayData(Stream ms, decimal volume) {

 PlayData(ms, null, volume, new int[] { }, 0);

 }

 /// <summary>

 /// Stream raw audio data to the EZ-B v4's speakers.

 /// 0 is silent, 100 is normal, 200 is 2x gain, 300 is 3x gain, etc.

 /// The audio must be RAW 8 Bit at 18 KHZ Sample Rate

 /// *Note: You must dispose of the memory stream yourself after calling this

 /// </summary>

 public void PlayData(Stream ms, decimal volume) {

 PlayData(ms, null, volume, 0);

 }

 /// <summary>

 /// Stream raw audio data to the EZ-B v4's speakers.

 /// 0 is silent, 100 is normal, 200 is 2x gain, 300 is 3x gain, etc.

 /// The audio must be RAW 8 Bit at 18 KHZ Sample Rate

 /// *Note: You must dispose of the memory stream yourself after calling this

 /// </summary>

 public void PlayData(Stream ms, byte[] bytes, decimal volume, int playFromSample) {

 Stop();

 if (!_ezb.IsConnected)

 return;

 if (_ezb.EZBType != EZB.EZ_B_Type_Enum.ezb4) {

 _ezb.Log(false, "This feature is only available for EZ-B v4");

 return;

 }

 initAfterBufferArrays();

 MemoryStream tmpMs = new MemoryStream();

 if (_ezb.GetFirmwareVersionEnum() ==
EZB.FirmwareVersionEnum.EZB_v4_OS_IoTiny)

 tmpMs.Write(_rampUp, 0, _rampUp.Length);

 if (ms != null)

 ms.CopyTo(tmpMs);

 else if (bytes != null)

 tmpMs.Write(bytes, 0, bytes.Length);

 else

 throw new Exception("Expecting either a memorystream or byte array of audio");

 if (_ezb.GetFirmwareVersionEnum() ==
EZB.FirmwareVersionEnum.EZB_v4_OS_IoTiny)

 tmpMs.Write(_rampDown, 0, _rampDown.Length);

 if (tmpMs.Length == 0)

 return;

 tmpMs.Write(_afterBuffer, 0, _afterBuffer.Length);

 _playFromSample = playFromSample;

 tmpMs.Position = playFromSample;

 Volume = volume;

 _cnt++;

 _tsSound.StartNew(new ThreadStartParams(_cnt, tmpMs));

 }

 /// <summary>

 /// Stream raw audio data to the EZ-B v4's speakers.

 /// 0 is silent, 100 is normal, 200 is 2x gain, 300 is 3x gain, etc.

 /// The audio must be RAW 8 Bit at 18 KHZ Sample Rate

 /// *Note: You must dispose of the memory stream yourself after calling this

 /// </summary>

 public void PlayDataWait(Stream ms, byte[] bytes, decimal volume, int
playFromSample) {

 Stop();

 if (!_ezb.IsConnected)

 return;

 if (_ezb.EZBType != EZB.EZ_B_Type_Enum.ezb4) {

 _ezb.Log(false, "This feature is only available for EZ-B v4");

 return;

 }

 initAfterBufferArrays();

 MemoryStream tmpMs = new MemoryStream();

 if (_ezb.GetFirmwareVersionEnum() ==
EZB.FirmwareVersionEnum.EZB_v4_OS_IoTiny)

 tmpMs.Write(_rampUp, 0, _rampUp.Length);

 if (ms != null)

 ms.CopyTo(tmpMs);

 else if (bytes != null)

 tmpMs.Write(bytes, 0, bytes.Length);

 else

 throw new Exception("Expecting either a memorystream or byte array of audio");

 if (_ezb.GetFirmwareVersionEnum() ==
EZB.FirmwareVersionEnum.EZB_v4_OS_IoTiny)

 tmpMs.Write(_rampDown, 0, _rampDown.Length);

 if (tmpMs.Length == 0)

 return;

 tmpMs.Write(_afterBuffer, 0, _afterBuffer.Length);

 _playFromSample = playFromSample;

 tmpMs.Position = playFromSample;

 Volume = volume;

 _cnt++;

 threadStreamAudio(0, new ThreadStartParams(_cnt, tmpMs));

 }

 void threadStreamAudio(int taskId, object o) {

 ThreadStartParams threadStartParams = (ThreadStartParams)o;

 if (_cnt != threadStartParams.CNT || !_ezb.IsConnected)

 return;

 Stopwatch sw = new Stopwatch();

 try {

 if (OnStartPlaying != null)

 OnStartPlaying();

 _ezb.sendCommand(EZB.CommandEnum.CmdSoundStreamCmd,
(byte)EZB.CmdSoundv4Enum.CmdSoundInitStop);

 bool playing = false;

 _position = 0;

 byte[] bTmp = new byte[PREBUFFER_SIZE];

 do {

 int bytesRead;

 if (playing)

 bytesRead = threadStartParams.AudioStream.Read(bTmp, 0, PACKET_SIZE);

 else

 bytesRead = threadStartParams.AudioStream.Read(bTmp, 0, PREBUFFER_SIZE);

 _position += bytesRead;

 bool isClipping = false;

 int highest = 0;

 int lowest = 255;

 int average = 0;

 long total = 0;

 decimal volumeMultiplier = _volume / 100m;

 if (_volume != 100 || OnAudioDataChanged != null)

 for (int x = 0; x < bytesRead; x++) {

 decimal newVal = (decimal)bTmp[x];

 if (newVal > 128)

 newVal = Math.Max(128, 128 + ((newVal - 128) * volumeMultiplier));

 else if (newVal < 128)

 newVal = Math.Min(128, 128 - ((128 - newVal) * volumeMultiplier));

 if (newVal > 255) {

 newVal = 255;

 isClipping = true;

 } else if (newVal < 0) {

 newVal = 0;

 isClipping = true;

 }

 highest = Math.Max(highest, (int)newVal);

 lowest = Math.Min(lowest, (int)newVal);

 total += (int)newVal;

 bTmp[x] = (byte)newVal;

 }

 average = (int)(total / bytesRead);

 List<byte> dataTmp = new List<byte>();

 dataTmp.Add((byte)EZB.CmdSoundv4Enum.CmdSoundLoad);

 dataTmp.AddRange(BitConverter.GetBytes((UInt16)bytesRead));

 dataTmp.AddRange(bTmp.Take(bytesRead));

 if (_cnt != threadStartParams.CNT)

 return;

 _ezb.sendCommand(EZB.CommandEnum.CmdSoundStreamCmd,
dataTmp.ToArray());

 if (_cnt != threadStartParams.CNT)

 return;

 if (!playing && _position >= PREBUFFER_SIZE) {

 _ezb.sendCommand(EZB.CommandEnum.CmdSoundStreamCmd,
(byte)EZB.CmdSoundv4Enum.CmdSoundPlay);

 playing = true;

 sw.Start();

 }

 if (OnAudioDataChanged != null)

 OnAudioDataChanged(lowest, highest, average);

 if (playing) {

 if (OnClippingStatus != null)

 OnClippingStatus(isClipping);

 float runtime = (float)sw.ElapsedMilliseconds;

 // convert milliseconds to seconds. Multiple the seconds by the audio bit rate.

 // this gets us where we should be in the stream.

 // We add the prebuffer lengthh because we don't actually wait and play during
the prebuffer, as the pre buffer is transmitted in one chunk with no delays.

 // Also, the stop watch doesn't start until the audio begins to play after
prebuffer.

 float shouldBeAtSamplePosition = ((runtime / 1000f) *
(float)AUDIO_SAMPLE_BITRATE) + (float)_afterBuffer.Length;

 // check to see if we are behind on the stream based on how long the audio has
been playing in samples.

 float difference = _position - shouldBeAtSamplePosition;

 // if there is a difference, wait some time and let the ez-b buffer play and catch
up

 if (difference > 0) {

 // convert the sample difference to a millisecond time so we know how long to
sleep and let the ez-b catch up

 float delay = (difference / AUDIO_SAMPLE_BITRATE) * 1000;

 Thread.Sleep((int)delay);

 }

 }

 } while (_position < threadStartParams.AudioStream.Length && _ezb.IsConnected
&& _cnt == threadStartParams.CNT);

 } catch (Exception ex) {

 _ezb.Log(false, "Error Streaming Audio: {0}", ex);

 } finally {

 sw.Stop();

 threadStartParams.AudioStream.Dispose();

 if (_ezb.IsConnected)

 _ezb.sendCommand(EZB.CommandEnum.CmdSoundStreamCmd,
(byte)EZB.CmdSoundv4Enum.CmdSoundInitStop);

 if (OnClippingStatus != null)

 OnClippingStatus(false);

 if (OnStopPlaying != null)

 OnStopPlaying();

 }

 }

 /// <summary>

 /// Stop the audio which is being played

 /// </summary>

 public void Stop() {

 _cnt++;

 // a slight amount of time to ensure the audio has stopped before attempting to
play new audio

 System.Threading.Thread.Sleep(250);

 }

 /// <summary>

 /// Dispose of the AutoPositioner

 /// </summary>

 protected override void DisposeOverride() {

 OnStartPlaying = null;

 OnStopPlaying = null;

 _tsSound.Dispose();

 _tsSound = null;

 _cnt++;

 }

 }

}

Camera
The camera protocol is a stream of JPG images, each with a header.

Received Packet
Visible image (regular camera): EZIMG<unsigned 16bit int length><jpg data>

Infrared image (IPS camera): EZIRC<unsigned 16bit int length><jpg data>

Sample Code
This is example code from the EZ-B SDK that loops for ever collecting video data, unless there is a
disconnect or timeout. In your program, you will want to handle connect and disconnects gracefully. This
code is presented as an example only.

 public class EZBv4VideoSample {

 /// <summary>

 /// Event raised when an infrared image is ready. This image must be disposed after use.

 /// </summary>

 public event OnImageIRReadyHandler OnImageIRReady;

 public delegate void OnImageIRReadyHandler(Bitmap BM);

 /// <summary>

 /// Event raised when the image is ready. This image must be disposed after use.

 /// </summary>

 public event OnImageReadyHandler OnImageReady;

 public delegate void OnImageReadyHandler(Bitmap BM);

 /// <summary>

 /// Event raised when an infrared image is ready.

 /// </summary>

 public event OnImageIRDataReadyHandler OnImageIRDataReady;

 public delegate void OnImageIRDataReadyHandler(byte[] imageData);

 /// <summary>

 /// Event raised when the image is ready.

 /// </summary>

 public event OnImageDataReadyHandler OnImageDataReady;

 public delegate void OnImageDataReadyHandler(byte[] imageData);

 readonly byte [] TAG_EZIMAGE = new byte[] { (byte)'E', (byte)'Z', (byte)'I', (byte)'M', (byte)'G'
};

 readonly byte [] TAG_EZIRC = new byte[] { (byte)'E', (byte)'Z', (byte)'I', (byte)'R', (byte)'C' };

 readonly int BUFFER_SIZE = 128000;

 void imageThreadWorker() {

 List<byte> bufferImage = new List<byte>();

 byte[] bufferTmp = new byte[BUFFER_SIZE];

 try {

 using (var tcpClient = new TcpClient()) {

 IAsyncResult ar = tcpClient.BeginConnect(threadStartParams.IPAddress, threadStartParams.Port,
null, null);

 if (!ar.AsyncWaitHandle.WaitOne(TimeSpan.FromSeconds(3), false))

 throw new TimeoutException();

 tcpClient.EndConnect(ar);

 tcpClient.ReceiveBufferSize = BUFFER_SIZE;

 tcpClient.NoDelay = true;

 tcpClient.ReceiveTimeout = 5000;

 tcpClient.SendTimeout = 3000;

 using (NetworkStream ns = tcpClient.GetStream())

 while (tcpClient.Connected) {

 int read = ns.Read(bufferTmp, 0, BUFFER_SIZE);

 if (read == 0)

 throw new Exception("Client disconnected");

 bufferImage.AddRange(bufferTmp.Take(read));

 if (bufferImage.Count > 512000)

 throw new Exception(string.Format("Image data is piling up and not being processed. We
stopped the collection at {0:###,###} Bytes. Post on the forum so we can better understand what is
happening and fix it.", bufferImage.Count));

 LOOP_AGAIN:

 ImageTypeEnum imageType = ImageTypeEnum.NA;

 int foundStart = -1;

 if (bufferImage.Count < TAG_EZIMAGE.Length)

 continue;

 for (int p = 0; p < bufferImage.Count - TAG_EZIMAGE.Length; p++)

 if (bufferImage[p] == TAG_EZIMAGE[0] &&

 bufferImage[p + 1] == TAG_EZIMAGE[1] &&

 bufferImage[p + 2] == TAG_EZIMAGE[2] &&

 bufferImage[p + 3] == TAG_EZIMAGE[3] &&

 bufferImage[p + 4] == TAG_EZIMAGE[4]) {

 imageType = ImageTypeEnum.Camera;

 foundStart = p;

 break;

 } else if (bufferImage[p] == TAG_EZIRC[0] &&

 bufferImage[p + 1] == TAG_EZIRC[1] &&

 bufferImage[p + 2] == TAG_EZIRC[2] &&

 bufferImage[p + 3] == TAG_EZIRC[3] &&

 bufferImage[p + 4] == TAG_EZIRC[4]) {

 imageType = ImageTypeEnum.Infrared;

 foundStart = p;

 break;

 }

 if (foundStart == -1)

 continue;

 if (foundStart > 0)

 bufferImage.RemoveRange(0, foundStart);

 if (bufferImage.Count < TAG_EZIMAGE.Length + sizeof(UInt32))

 continue;

 int imageSize = (int)BitConverter.ToUInt32(bufferImage.GetRange(TAG_EZIMAGE.Length,
sizeof(UInt32)).ToArray(), 0);

 if (bufferImage.Count <= imageSize + TAG_EZIMAGE.Length + sizeof(UInt32))

 continue;

 bufferImage.RemoveRange(0, TAG_EZIMAGE.Length + sizeof(UInt32));

 _imageSize = imageSize;

 try {

 if (imageType == ImageTypeEnum.Camera) {

 if (OnImageReady != null)

 OnImageReady(new Bitmap(new MemoryStream(bufferImage.GetRange(0,
imageSize).ToArray())));

 if (OnImageDataReady != null)

 OnImageDataReady(bufferImage.GetRange(0, imageSize).ToArray());

 } else if (imageType == ImageTypeEnum.Infrared) {

 if (OnImageIRReady != null)

 OnImageIRReady(new Bitmap(new MemoryStream(bufferImage.GetRange(0,
imageSize).ToArray())));

 if (OnImageIRDataReady != null)

 OnImageIRDataReady(bufferImage.GetRange(0, imageSize).ToArray());

 }

 } catch (Exception ex) {

 _ezb.Log(false, "ezbv4 camera image render error: {0}", ex);

 }

 bufferImage.RemoveRange(0, imageSize);

 // If there's at least 5kb of data in the buffer, loop again and see if there's another
image in the buffer

 // Without doing this, the there's a chance the buffer will fill with future images and
we'll never catch up because image data is only processed when an image is available

 if (bufferImage.Count > 5000)

 goto LOOP_AGAIN;

 }

 }

 } catch (Exception ex) {

 _ezb.Log(false, "EZ-B v4 Camera Error: {0}", ex);

 }

 }

 }

To-Do
EZ-B protocol commands not yet specified in this document includeâ€¦

 Ultrasonic Distance Sensor

 Built-in Audio Samples

Extend EZB Protocol
Expanding the capabilities of your robotic projects with Synthiam's ARC platform is made possible through
the innovative use of the EZB Protocol Command 0, specifically designed to extend EZBs with new custom
functionality. This unique command is a foundational gateway for introducing custom functionalities into
the EZB firmware, empowering users to transcend beyond the standard suite of commands. By leveraging
this protocol, enthusiasts and developers alike can craft bespoke commands tailored to their specific
needs, thus unlocking a new realm of possibilities. Through detailed examples and comprehensive guides,
from DJ's UNO Firmware enhancements to the advanced Balance Robot project, the pathway is clear for
those aspiring to create or enhance robot skills. This initiative fosters creativity and broadens the scope
of what can be achieved, ensuring that your robotic endeavors are limited only by imagination.

To add new functions to the EZB firmware for the Arduino Due/Mega, you can use the EZB Protocol
Command 0, also documented in some firmware examples as CmdOurCustomCmds (Command 0). This is a
starting point for creating custom commands. The EZB Command 0 is unused for the standard built-in
commands of ARC (i.e., moving servos, reading/writing digital I/O, etc.), so it is a designated area in the
firmware for user-defined commands, which helps avoid conflicts with existing or future ARC commands.

Several examples of extending the standard EZB Communication Protocol with custom commands exist.
Please use these examples as a reference when building your custom EZB firmware...

Robot Skill Tutorial for extending protocol has example code and several additional details.

DJ's UNO Firmware with Wheel Encoder Counter has a corresponding robot skill Wheel Encoder
Counter. A video documenting the entire process of creating the robot skill and firmware is here.

The Balance Robot firmware for the Arduino Mega is here:
https://synthiam.com/Support/Hardware/Balance-Robot. This example extends the EZB Protocol
Command 0 with new commands. It uses the Inverted Pendulum Movement Panel robot skill.

Creating a custom robot skill will most likely be necessary to send the commands to your new firmware
EZB device. You can use the Create Robot Skill Tutorial to learn how to create a robot skill.

https://synthiam.com/Products/ARC
https://synthiam.com/Support/Create-Robot-Skill/Examples/extend-ezb-protocol-with-custom-command
https://synthiam.com/Support/Hardware/Arduino-Genuino-Uno
https://synthiam.com/Support/Skills/Navigation/Wheel-Encoder-Counter?id=17591
https://youtu.be/_Pl9p6FwJZE
https://synthiam.com/Support/Hardware/Balance-Robot
https://synthiam.com/Support/Skills/Movement-Panels/Inverted-Pendulum?id=17551
https://synthiam.com/Support/Create-Robot-Skill/Overview

This live hack video by DJ Sures has plenty of good information as he creates a robot skill and extends
the EZB protocol with new commands. This example demonstrates how to write and read from the
protocol with custom commands. It is a long video, but you can skip through sections to find relevant
lessons.

Here's a step-by-step guide on how to define new custom command functions in the Arduino Mega EZB
firmware:

1. Identify the Custom Command Range:

Ensure that the custom command numbers you choose do not conflict with existing commands
in the firmware. Defining a range of numbers for your custom commands unique to your project
is a good practice. Adding your custom commands under the EZB Protocol Command 0 will
prevent conflict with existing EZB commands documented in the protocol datasheet.

2. Modify the Firmware:

Open the Arduino Mega EZB firmware source code in the Arduino IDE or your preferred
development environment.
Locate the section of the code that handles the CmdOurCustomCmds command.
Define your custom command numbers as constants or enums for better code readability. For
example:

const byte CmdCustomAction1 = 1;
const byte CmdCustomAction2 = 2;
// ... and so on

Add additional else if statements within the CmdOurCustomCmds block to handle your new custom
commands. For example:

} else if (cmd == CmdOurCustomCmds) {
 byte cmd2 = ReadByte();
 if (cmd2 == CmdCustomAction1) {
 // Handle custom action 1
 } else if (cmd2 == CmdCustomAction2) {
 // Handle custom action 2
 }
 // ... additional custom commands
}

Implement the functions that correspond to each custom command. These functions will contain
the logic for the actions you want to perform when the command is received.

3. Compile and Upload the Firmware:

After adding your custom commands and their corresponding functions, compile the firmware.
Upload the compiled firmware to your Arduino Mega.

4. Update Your ARC Skill:
In your ARC skill, update the code to send the custom commands to the Arduino Mega. Use
the CmdOurCustomCmds command followed by the specific custom command number you defined.
For example, to send CmdCustomAction1, you would send a packet with CmdOurCustomCmds followed
by CmdCustomAction1.

5. Testing:

Test your ARC skill to ensure that the custom commands are being sent correctly and that the
Arduino Mega is responding as expected.

Regarding the number range for custom commands, there isn't a specific range reserved for user-defined
commands. However, choosing numbers that are not already in use by the firmware and are unlikely to be
used in future updates is essential. Using sub-commands under CmdOurCustomCmds is a good approach, as it
organizes your custom commands under a single parent command and reduces the likelihood of conflicts.

Remember to document your custom commands and maintain a list of them to ensure that you don't
accidentally reuse numbers for different functions in the future.

https://synthiam.com/Products/ARC

	Overview
	DIY & Education
	Create Custom Firmware

	Enterprise
	Become a Hardware Partner

	Current Supported Hardware
	Communication Protocol
	Intellectual Property Rights Notice for Specifications Documentation
	Connection
	Capability Controller

	Protocol Commands
	Overview
	Release All Servos
	Get Unique ID
	Set Battery Monitor Protection State
	Set Battery Monitor Low Voltage Threshold
	Get Battery Voltage
	Get CPU Temperature
	UART #0 Init
	UART #1 Init
	UART #2 Init
	UART #0 Write
	UART #1 Write
	UART #2 Write
	UART #0 Get Available Bytes
	UART #1 Get Available Bytes
	UART #2 Get Available Bytes
	UART #0 Get Data from Input Buffer
	UART #1 Get Data from Input Buffer
	UART #2 Get Data from Input Buffer
	I2C Set Clock Speed
	Restore to Defaults
	I2C Write
	I2C Read
	Set PWM Duty Cycle
	Set Servo Speed
	Set Servo Position
	Set Digital Port ON
	Set Digital Port OFF
	Get Digital Port State
	Get ADC Value
	Send UART on any Digital Port

	Streaming Audio
	Commands
	Sync Example Code
	EZBv4Sound Example Code

	Camera
	Received Packet
	Sample Code

	To-Do
	Extend EZB Protocol

