
synthiam.com

Migrating from EZ-Script to JavaScript
How to move your code from EZ-Script to JavaScript. JavaScript offers faster execution and more features.

Last Updated: 2/2/2022

https://synthiam.com

 Why?

Why migrate from EZ-Script to JavaScript? The answer is performance and functionality. While EZ-
Script appears straightforward, it is very similar to JavaScript. The most significant differences will
be outlined in this tutorial. However, JavaScript can organize commands in groups, called classes.
These command groups make JavaScript more organized and easier to find the correct command
that you're looking for.

Performance

The Synthiam implementation of JavaScript in ARC is fast... very fast! It outperforms EZ-Script by a
significant magnitude. Take for instance, a benchmark between the two languages by counting to
1,000,000.

JavaScript (1.1 seconds)

EZ-Script (2 minutes, 5Â seconds)

https://synthiam.com/uploads/user/DB763BE15E695777689418BE7364E0A3/yellz0do.png

https://synthiam.com/uploads/user/DB763BE15E695777689418BE7364E0A3/3slmmeoa.png

 Organized Commands

JavaScript organizes commands in groups, called classes. There are classes for controlling servos,
reading ADC, setting and reading digital ports, and more. The methods within the classes are well
documented on the JavaScript manual page in the support section.

ARC JavaScript Manual:Â https://synthiam.com/Support/javascript-api/javascript-overview

How Does It Work

When typing in the JavaScript window, intellisense will detect the first characters of each word and
display a dropdown of options. For example, if want to move a servo into a position, we begin
typing Servo. and the class for Servo commands will display.

Each class separates the commands by a (.) period. Select the class and the commands within that
class will be displayed.

https://synthiam.com/Support/javascript-api/javascript-overview
https://synthiam.com/uploads/user/DB763BE15E695777689418BE7364E0A3/jhywdxem.png

And here we can see the command Servo.setServoPosition, to move a servo into a specified
position. There are variants of the command that support different parameters. That means you can
type any variant of that command by providing only the parameters that you wish to provide. For
Servo.setServoPosition, there is one variant that accepts the board index, and the other does not
which means it defaults to index #0

Either of these two servo commands will perform the same outcome. The only difference is the
second command is specifying the EZB board index.

``` ï»¿Servo.setPosition(d0, 75);

Servo.setPosition(d0, 75, 0);ï»¿ ```

https://synthiam.com/uploads/user/DB763BE15E695777689418BE7364E0A3/mef3slqz.png


 Semicolon Line Endings

When writing EZ-Script code, at the end of the line you simply press <enter> and start coding on
the next line. However, in JavaScript, it is recommended to terminate the line with a semicolon ;
character. With the ARC JavaScript compiler, it is not mandatory to do it, but you will find most
code examples will have the semicolon at the end of the line.

Examples

EZ-Script ExampleÂ  ``` ï»¿print("This is some text") print("This is another line of text") ```
JavaScript Example ``` ï»¿print("This is some text"); print("This is another line of text"); ```
*Note: Notice the semicolon at the end of the lines in JavaScript. Again, it's not mandatory, but it is
recommended for proper JavaScript compliance.

Why Semicolons?

Traditionally, a semicolon has been common across many programming languages to tell the
compiler the end of the command. This is because many commands can be included on the same
line with JavaScript. It is not recommended to do this because it is messy to read, but some people
program this way.

Example Of Many Commands On One Line ``` print("Hello"); print("World");ï»¿ ```



 Case Sensitive

JavaScript, much like many programming languages, is case sensitive for variabes and functions.
That means a variable named "MyVariable" is different than "myVariable". This applies to all
variables, commands and functions.

Example

Here is an example program that demonstrates how the different case of a variable makes two
different variables. ``` ï»¿var MyVariable = "ONE";

var myVariable = "TWO";

print(MyVariable);

print(myVariable); ``` The output of that example will demonstrate how ONE and TWO are both
printed. This is because the case sensitive variable name is taken into consideration for that
variable.

https://synthiam.com/uploads/user/DB763BE15E695777689418BE7364E0A3/rt0ktgli.png


 Variables

The first thing to cover are how variables differ. A variable in EZ-Script starts with a $ (dollar sign).
A variable in JavaScript does not start with anything and can be named however you wish, as long
as the first character is not a number.

Assign Variable Example

EZ-Script Example Here is an example of a variable being created in EZ-Script ```
ï»¿$MyVariable = "Some text"

print($MyVariable) ``` JavaScript Equivalent This is the equivalent of assigning a value to a
JavaScript variable ``` ï»¿var MyVariable = "Some text";

print(MyVariable); ``` *Note: Remember that variables are case-sensitive. This is covered in an
previous step of this tutorial.

JavaScript Variables Are Not Global Across ARC

This is one difference that you must be aware of. When creating a variable in EZ-Script, the
variable is accessible across all robot skills in ARC. However, when creating a variable in JavaScript,
it is only accessible by that isolated script. To share variables across other robot skills, you will use
the getVar() and setVar() commands. That will set a global variableÂ with a value so other robot
skills can see it.

In fact, setting and getting variables from the Global Variable storage will also work across EZ-
Script variables. EZ-Script sets variables as global by default. So, if you assign a variable in EZ-
Script, you can retrieve it in another robot skill using JavaScript with the getVar() command.

Example of Using Global Variables If you have a variable that you would like to share with other
robot skills, use the setVar() function. This will push the variable's current value into the global
stack so it is available by other robot skills.Â  ``` ï»¿var myVariable = "This is some text";

setVar("$myVariable", myVariable); ``` In that example, the global $myVariable will be assigned
the value of JavaScript value of myVariable. This means that in another robot skill, you can retrieve
that value.

``` ï»¿var myVariable = getVar("$myVariable");

print(myVariable); ``` [head2]Global Variable Viewer[/head] The global variable viewer will
display all variables in ARC. By clicking on a variable, it will insert the setVar() command where the
cursor is.

 IF ELSE ELSEIF

JavaScript = uses ==

That's right, when comparing two values in JavaScript IF condition, use == instead of a single =.
This is because a single = is reserved for assigning values. The double == is reserved for comparing
values.

``` ï»¿var myVariable = 5;

if (myVariable == 5) {

print("You got it"); } ``` That's the only difference for comparisons. Using > greater than, < less
than, >= greater than equal to, <= less than equal to, etc.. are all the same.

[head2]Not Equals[/head] Not equals puts an ! exclamation mark in front of the = equal sign in the
comparison.Â  This means that the value is not equal to another value. ``` ï»¿var myVariable = 5;

if (myVariable != 10) {

print("The value does not equal 10"); } ```

JavaScript Uses Brackets

In EZ-Script, an IF condition ends with an ENDIF. JavaScript operates the same way but uses
instead. This is called the scope, when code is between the brackets. In EZ-Script, the scope is
between the IF and ENDIF statements. In JavaScript, the scope is between the closing bracket.

EZ-Script ``` ï»¿$myVariable = 5

if ($myVariable == 5) print("You got it") endif ``` JavaScript ``` ï»¿var myVariable = 5;

if (myVariable == 5) {

print("You got it"); } ```

IF ELSEIF ELSE

This is pretty much the same as EZ-Script, by having ELSE IF and ELSE commands. ``` var
myVariable = 5;

if (myVariable == 5) {

print("You got it");

} else {

print("Nope, missed");

} ```

or similar example using ELSE IF ``` var myVariable = 5;

if (myVariable == 5) {

print("You got it");

} else if (myVariable = 6) {

print("So close");



} else {

print("Nope, missed");

} ```

Single Command Doesn't Require Brackets

Occasionally you may see an IF condition with no brackets. That is because you may only have one
command after the IF, therefore you do not require brackets. This is similar to the basic
programming language, where a single IF that doesn't have ENDIF means only use the next
command.

EZ-Script ``` ï»¿$myVariable = 5

if ($myVariable = 5) print("You got it") endif ``` JavaScript ``` var myVariable = 5;

if (myVariable == 5) print("You got it");ï»¿ ```



 For Loop

EZ-Script has a few different methods to loop. You can loop with EZ-Script using the REPEAT,
REPEATUNTIL, REPEATWHILE, and simple GOTO. We'll cover the equivalent JavaScript commands
here.

REPEAT = FOR

The EZ-Script REPEAT command is equivalent to the FOR command in JavaScript.

EZ-Script ``` ï»¿REPEAT($cnt, 1, 10, 1)

print($cnt)

ENDREPEAT ``` JavaScript ``` ï»¿for (var cnt = 0; cnt < 10; cnt++) {

print(cnt)

} ``` Here is an explanation of each command in the FOR statement from theÂ W3 Schools
website.

Quote:

forÂ (statement 1;Â statement 2;Â statement 3) { //Â code block to be executed }

Statement 1Â is executed (one time) before executing the code block. Statement 2Â defines the
condition for executing the code block. Statement 3Â is executed (every time) after the code block
has been executed.

REPEATWHILE = WHILE

The EZ-Script REPEATWHILE() command is replaced with WHILE() in JavaScript. They operate the
same way and accept the same parameter. The loop will continue while the condition is TRUE.

EZ-Script ``` ï»¿$cnt = 0

repeatwhile( $cnt < 5)

print($cnt) $cnt = $cnt + 1

endrepeatwhile ``` JavaScript ``` ï»¿var cnt = 0;

while (cnt < 5) {

print(cnt); cnt = cnt + 1;

} ```

https://synthiam.com//www.w3schools.com/js/js_loop_for.asp

	Migrating from EZ-Script to JavaScript
	Why?
	Performance

	Organized Commands
	How Does It Work

	Semicolon Line Endings
	Examples
	Why Semicolons?

	Case Sensitive
	Example

	Variables
	Assign Variable Example
	JavaScript Variables Are Not Global Across ARC

	IF ELSE ELSEIF
	JavaScript = uses ==
	JavaScript Uses Brackets
	IF ELSEIF ELSE
	Single Command Doesn't Require Brackets

	For Loop
	REPEAT = FOR
	Quote:

	REPEATWHILE = WHILE


